High-resolution structure of coexisting nanoscopic and microscopic lipid domains.
نویسندگان
چکیده
We studied coexisting micro- and nanoscopic liquid-ordered/liquid-disordered domains in fully hydrated multilamellar vesicles using small-angle X-ray scattering. Large domains exhibited long-range out-of-plane positional correlations of like domains, consistent with previous reports. In contrast, such correlations were absent in nanoscopic domains. Advancing a global analysis of the in situ data allowed us to gain a deep insight into the structural and elastic properties of the coexisting domains, including the partitioning of cholesterol in each domain. In agreement with a previous report, we found that the thickness mismatch between ordered and disordered domains decreased for nanoscopic domains. At the same time, we found also the lipid packing mismatch to be decreased for nano-domains, mainly due to the liquid-disordered domains becoming more densely packed when decreasing their size.
منابع مشابه
Transient Nanoscopic Phase Separation in Biological Lipid Membranes Resolved by Planar Plasmonic Antennas.
Nanoscale membrane assemblies of sphingolipids, cholesterol, and certain proteins, also known as lipid rafts, play a crucial role in facilitating a broad range of important cell functions. Whereas on living cell membranes lipid rafts have been postulated to have nanoscopic dimensions and to be highly transient, the existence of a similar type of dynamic nanodomains in multicomponent lipid bilay...
متن کاملRaft domains of variable properties and compositions in plasma membrane vesicles.
Biological membranes are compartmentalized for functional diversity by a variety of specific protein-protein, protein-lipid, and lipid-lipid interactions. A subset of these are the preferential interactions between sterols, sphingolipids, and saturated aliphatic lipid tails responsible for liquid-liquid domain coexistence in eukaryotic membranes, which give rise to dynamic, nanoscopic assemblie...
متن کاملNanoscopic lipid domain dynamics revealed by atomic force microscopy.
Intrinsic heterogeneities, represented as domain formations in biological membranes, are important to both the structure and function of the membranes. We observed domain formations in mixed lipid bilayers of dipalmitoylphosphatidylcholine (DPPC), dilauroylphosphatidylcholine (DLPC), and cholesterol (chol) in a fluid environment using an atomic force microscope (AFM). At room temperature, we de...
متن کاملFluorescence methods to detect phase boundaries in lipid bilayer mixtures.
Phase diagrams of lipid mixtures can show several different regions of phase coexistence, which include liquid-disordered, liquid-ordered, and gel phases. Some phase regions are small, and some have sharp boundaries. The identity of the phases, their location in composition space, and the nature of the transitions between the phases are important for understanding the behavior of lipid mixtures...
متن کاملMolecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 13 9 شماره
صفحات -
تاریخ انتشار 2017